
C Pointers for Experts

Sean McNealy

April 9, 2017

1 Introduction

Pointers are not scary. If you’ve sent arguments to a python function or “new”ed
up a Java class you’ve used pointers. In many languages there isn’t a way to
not use pointers. C just makes you think about them. This is an introduction
to using pointers in C, without assuming you want to know about all the types,
if/else, switch, precompiler, headers, and many other features. This is for the
programmer who has experience in a language that handles pointers differently
and who wants to learn how C does it or any student that has a graduate class
project due in a week and “Oh God no! It’s in C!”

2 Strings

Strings are intuitive data structures found in every programming language. In
C they can be used as teaching examples because there are simple functions to
write strings to output streams or read strings from input streams or program
arguments. However, they can also be used to show some of the worst methods
to mess with pointers. Operating directly on strings is how many security
vulnerabilities are created. It is important to understand what not to do before
writing production code.

The string “Hello World!” can be stored in memory several ways. The most
common, even though it is quite limiting, is ASCII using 1 byte per character.
In order to use that string in our program there will be a location in memory
that has the following values:

H e l l o W o r l d ! null
0x48 0x65 0x6C 0x6C 0x6F 0x20 0x77 0x6F 0x72 0x6C 0x64 0x21 0x00

And indeed, if we run “od -A x -t x1 hello” to view a compiled hello
world program in hex we can see that sequence of numbers in the program:

...

0005f0 01 00 02 00 48 65 6c 6c 6f 20 77 6f 72 6c 64 21

000600 00 48 65 6c 6c 6f 20 77 6f 72 6c 64 20 61 67 61

...

1

In this program the string “Hello world!” exists between the memory loca-
tions 0x5f4 and 0x600, taking 13 bytes of memory. This program will be loaded
from the disk into memory when it is executed. When we want to do anything
with this string, like print it to the stdout output stream, the program will
reference it by its memory location. And here we have our first example of a
pointer! Let’s see it used in the hello world program.

Listing 1: hello.c

#include <stdio.h>

/* Simple Hello World! program. */

void print_hello_world (){

puts("Hello world!");

}

void print_hello_world_again (){

puts("Hello world again!");

}

int main()

{

print_hello_world ();

print_hello_world_again ();

return 0;

}

This is a simple C program that will to the standard output stream:

Hello world!

Hello world again!

To compile this program run “gcc -Wall -Wpedantic -g -o hello hello.c”,
and run the program “./hello”.

Looking at this program, the main program calls 2 functions that write
constant strings to standard out using the puts function defined in stdio.h.
It may appear that we are passing the entire string “Hello world!” to the puts

function. We are not! Let’s check the argument type puts expects using the
man page by running “man -s3 puts”. We’ll also contrast it with putchar, a
function that writes a single character.

int putchar(int c);

int puts(const char *s);

So puts expects a pointer to a single character. const here only promises us
that the characters will not be changed when calling the function, a char* or
const char* are allowed arguments. What we can tell from this is that when
the API takes a char* as an argument it is always assumed to be a string. This
is because, as seen on putchar, we would not have to use a pointer in the case
we write a single character. The C language does not require all char*s to be

2

strings, and you can write functions that take pointers to single characters, but
by convention you would not pass character pointers around and it would be
very confusing to those reading your program. The same convention does not
apply to more complex types, but it helps most frequently on strings anyway.

To see this string pointer in action we compile the program into assembly
using gcc’s -S option. Each line in assembly code can easily be translated to the
actual machine binary that can execute on the target CPU. Lines with movl,
nop, and call are actual instructions that will be sent to the CPU by high
and low voltage patterns to control which logic gates are activated. Directives
beginning in ‘.’ are not instructions, but tell how to lay out non-instruction
pieces of memory necessary for the program (or are just comments, like ‘.file’).

Listing 2: hello.s

.file "hello.c"

.section .rodata

.LC0:

.string "Hello world!"

.text

.globl print_hello_world

.type print_hello_world , @function

print_hello_world:

.LFB0:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp , %rbp

.cfi_def_cfa_register 6

movl $.LC0 , %edi

call puts

nop

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE0:

.size print_hello_world , .-print_hello_world

.section .rodata

.LC1:

.string "Hello world again!"

.text

.globl print_hello_world_again

.type print_hello_world_again , @function

print_hello_world_again:

.LFB1:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp , %rbp

.cfi_def_cfa_register 6

movl $.LC1 , %edi

call puts

nop

3

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE1:

.size print_hello_world_again , .-

print_hello_world_again

.globl main

.type main , @function

main:

.LFB2:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp , %rbp

.cfi_def_cfa_register 6

movl $0 , %eax

call print_hello_world

movl $0 , %eax

call print_hello_world_again

movl $0 , %eax

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE2:

.size main , .-main

.ident "GCC: (Ubuntu 5.4.0 -6 ubuntu1 ~16 .04.4) 5.4.0

20160609"

.section .note.GNU -stack ,"",@progbits

The assembly program places our 2 strings in memory as null-terminated
strings using the .string directive. It also declares .LC0 and .LC1 to be the
memory location of where those strings are stored. Inside the print_hello_world
function the memory location .LC0 is stored in the register edi (the register the
first argument goes into by convention), and then the function puts is called.
puts will start reading characters from our string pointer in edi and write
characters to the output stream until it reaches a null character.

Thinking about string pointers this way, we can implement our own version
of puts using putchar and incrementing the pointer as we go along the string.
We just take a starting pointer and add characters to the output stream until
the pointer points at a null terminator.

Listing 3: puts.c

#include <stdio.h>

/* We can write a string character by character by incrementing

its pointer. */

void our_own_puts(const char* s){

// while the single character s points to is not null

while(*s != 0){

// putchar the character s is pointing to

putchar (*s);

4

// increment the address stored in s,

// so it points to the next character

s++;

}

// puts writes a newline to the stream at the end of the

string

putchar(’\n’);

}

int main()

{

const char* hello_world = "Hello world!";

our_own_puts(hello_world);

our_own_puts(hello_world);

return 0;

}

3 Using Pointers

Many features of C’s pointers will be intuitive to a programmer of other lan-
guages. If a pointer is passed to a function the called function may change the
data being pointed to. If two threads are using the same pointer it may be
necessary to implement some read and write locking.

In Java, for example, every variable except primitives is actually dealing
with a pointer. If that variable is null instead of a memory address you will find
the all too familiar NullPointerException at runtime when accessing methods
or fields. The same behavior can be see with C pointers, and let’s see a program
that does that. The function strlen tells us the length of a string. It has one
argument, a const char* type and returns an number.

size_t strlen(const char *s);

Listing 4: npe.c

#include <string.h>

/* Cause a segmentaton falut. */

int main()

{

char* null_pointer = NULL;

int i = strlen(null_pointer);

return 0;

}

NULL is defined as (void*)0, simply a zero value that will not give a compiler
warning when assigning to a pointer variable. Running this program causes a
segmentation fault, where the program has tried to access memory outside its
memory segment. Here is some output when debugging using gdb.

Program received signal SIGSEGV, Segmentation fault.

5

(gdb) bt

#0 strlen () at ../sysdeps/x86_64/strlen.S:106

#1 0x0000000000400542 in main () at npe.c:7

So on line 7 in the function main, strlen is called with a null pointer.
The strlen function tries to use this pointer. The operating system detects
a memory access request to the bad address and closes the program entirely,
returning the segmentation fault signal to the shell that executed the program.
You can haldle this signal yourself without entirely exiting, but in most cases
this default behavior is best, and avoiding a segfault in the first place is the
easiest solution.

4 Allocating Memory

So let’s say we want to combine the two strings “Hello” and “world” into one
string that we send to the output stream. We could define a space in memory we
want to copy both strings into using something like char[100]. This gives us a
100 character space on the stack memory area that we can safely do anything
we want in. In the next program we copy strings into that space as well as edit
specific characters to add a space, exclamation mark, and the null terminator.

Listing 5: hello static.c

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* Hello World! program that generates the output string

from "Hello" and "world" strings. */

int main()

{

const char* hello = "Hello";

const char* world = "world";

char hello_world [100];

// hello_world is a char* pointing to a space of 100

characters we have allocated

// it can be used as the destination of a strcpy operation

strcpy(hello_world , hello);

// we can access specific places in memory

hello_world[strlen(hello)] = ’ ’;

// we can add to the pointer and use it as a char* copy

destination

strcpy(hello_world + strlen(hello) + 1, world);

hello_world[strlen(hello) + 1 + strlen(world)] = ’!’;

hello_world[strlen(hello) + 1 + strlen(world) + 1] = ’\0’;

puts(hello_world);

6

return 0;

}

Note that the hello_world string is used as a char* argument to strcpy

function calls, but it is also used with the array accessor. The following two
lines of code are equivalent, as the array accessor is able to check the data type
of hello_world.

hello_world[strlen(hello)] = ’ ’;

*(hello_world + strlen(hello)) = ’ ’;

Both just write a “ ” (space) character to the same address. In many ar-
chitectures that have large words like 32 and 64 bit, this is a simple indirect
addressing mode, which can fit in a single instruction. This is pointer addition
in action. Whatever the pointer type, you can access into memory this way.

In the static allocation version of this function we don’t use all 100 characters
in this space and we could allocate a smaller amount. 13 would have been
enough. But what if we had only allocated 10? This is dangerous, as strcpy

would happily copy all 13 characters into the space we allocated, writing over
other important information. Sometimes the return address will be overwritten,
and your function will return not to where it should but will try to execute some
random location in memory. The solution to this is to never use strcpy, but its
responsible sibling strncpy instead, which is safer since it takes an argument
of the size of memory allocated and will not overrun that space.

We may also want to combine two strings that we don’t know the size of
beforehand. In that case, 100 characters may not be enough. This would be
very difficult using statically allocated memory. So we’ll let the operating system
give us dynamically allocated memory on the heap. The function malloc will
allocate memory whatever size we ask for and return a pointer to the beginning
of that memory. Like the char[100] before, we can do whatever we want inside
that memory.

Listing 6: hello heap.c

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* Hello World! program that generates the output string

from "Hello" and "world" strings (or any other strings)

passed in as arguments. */

int main(int argc , const char** argv)

{

if(argc != 3){

puts("Usage: hello_heap word1 word2");

return 0;

}

const char* hello = argv [1];

const char* world = argv [2];

7

// remember how much memory we malloc , for strncpy

size_t hello_world_len = strlen(hello) + 1 + strlen(world) +

2;

char* hello_world = (char*) malloc(hello_world_len);

if(hello_world == NULL){

// malloc may not give us memory , in that case exit

return -1;

}

strncpy(hello_world , hello , hello_world_len);

hello_world[strlen(hello)] = ’ ’;

strncpy(hello_world + strlen(hello) + 1, world ,

hello_world_len - strlen(hello) - 1);

hello_world[strlen(hello) + 1 + strlen(world)] = ’!’;

hello_world[strlen(hello) + 1 + strlen(world) + 1] = ’\0’;

puts(hello_world);

free(hello_world);

return 0;

}

This example uses strncpy even though it’s simple to prove we have allo-
cated enough memory for these copy operations. This is considered good pro-
gramming even if it is unnecessary. An experienced C programmer will notice
this example leaves out sizeof(char) that would be multiplied by the number
of characters to find the size_t hello_world_len we pass to malloc, but we
assume sizeof(char) = 1.

Note that we would never really want to combine strings like this. Since
we are outputting to a stream, the following accomplishes the same goal much
more efficiently. And snprintf will write to an allocated char* just as easily.

printf("%s %s!\n", argv[1], argv [2]);

5 Structs

Pointers to structs have a simple access method that makes reading code easier.
Both a hard to read way (*p).field and an easier way to read p->field are
shown in the function that prints the struct out to show they are equivilant. It
is easy to declare a struct on the stack if it is only used by functions called from
the current scope. In this example employee_1 is the better way to declare the
struct and send it to the print function. However, we could return employee_2

to another function if we trust it to free the memory when it is done. If we
returned a pointer to employee_1 the memory could be corrupted before it is
used since it is using the same stack memory later computations would use.

Listing 7: struct.c

#include <stdlib.h>

#include <stdio.h>

/* Pointers and structs. We store one struct on the stack

and one on the heap. */

8

typedef struct {

char* name;

int number;

} Employee;

void print_employee(Employee* e){

// dereference pointers like this

printf("Name: %s\n", e->name);

// ugly way to do the same thing

printf("Number: %i\n", (*e).number);

}

int main()

{

Employee employee_1;

employee_1.name = "John Smith";

employee_1.number = 1234;

Employee* employee_2 = (Employee *) malloc(sizeof(Employee));

if(employee_2 == NULL){

puts("Failed allocating memory");

return -1;

}

employee_2 ->name = "Jane Smith";

employee_2 ->number = 5678;

// both employees can be sent to the print

// function that accepts a pointer to a struct

print_employee (& employee_1);

print_employee(employee_2);

free(employee_2);

return 0;

}

Our struct contains a char*, which is not the memory location where “John
Smith” is stored. The actual characters are stored just like “Hello world!” was
stored in the compiled program, and our struct contains a pointer to that string.

Pointers that are not char* may seem weird when adding integers. They
actually jump full sizes of the type pointed to. So a pointer to an array of structs
will go to the next struct when adding one. But a pointer can be cast to any
other type of pointer without issue. To add any arbitrary number to an address,
cast to char*. While void* may work, it is undefined and might not work on
another system or compiler and you should be getting compiler warnings. Here
is an example with 3 ways to access into an array of structs.

Listing 8: arr struct.c

#include <stdlib.h>

#include <stdio.h>

/* Pointers and arrays of structs. Adding and casting. */

typedef struct {

9

char* name;

int number;

} Employee;

void print_employee(Employee* e){

printf("Name: %s\n", e->name);

printf("Number: %i\n", e->number);

}

int main()

{

const int num_employees = 2;

Employee* employees = (Employee *) malloc(num_employees *

sizeof(Employee));

if(employees == NULL){

puts("Failed allocating memory");

return -1;

}

employees [0]. name = "John Smith";

employees [0]. number = 1234;

employees [1]. name = "Jane Smith";

employees [1]. number = 5678;

// these do the same thing

// first is finding a pointer to the first element

print_employee (& employees [0]);

// second is just using the pointer to the array , which is

// equal to the pointer to the first element

print_employee(employees);

// these also do the same thing

// adding 1 to a Employee* increases the pointer by sizeof(

Employee)

print_employee(employees + 1);

// or if cast to a char*, we can add sizeof(Employee)

// which adds directly to the address

char* char_ptr_to_employees = (char*) employees;

char* char_ptr_to_employee_2 = char_ptr_to_employees +

sizeof(Employee);

print_employee ((Employee *) char_ptr_to_employee_2);

// or the simple way that worked for the first employee

print_employee (& employees [1]);

free(employees);

return 0;

}

6 Function Pointers

Function pointers are just like the other pointers so far. We declare a pointer
to a function that has both a return type and all its arguments. Within a data
type, here everything is an int, it’s easy to implement map and reduce functions

10

that apply argument functions to an array. The function map_reduce takes
pointers to a mapping and a reducing function as arguments.

Listing 9: function.c

#include <stdio.h>

/* Function pointers example. */

int add_1(int x){

return x + 1;

}

int noop(int x){

return x;

}

int sum(int x, int y){

return x + y;

}

int mul(int x, int y){

return x * y;

}

int* map(int* list , int(*f)(int), size_t len){

for(int i = 0; i < len; i++){

list[i] = f(list[i]);

}

return list;

}

int reduce(int* list , int(*f)(int , int), size_t len){

int acc = list [0];

for(int i = 1; i < len; i++){

acc = f(acc , list[i]);

}

return acc;

}

int map_reduce(int* list , int(* mapper)(int),

int(* reducer)(int , int), size_t len){

return reduce(map(list , mapper , len), reducer , len);

}

int main()

{

int list1 [4] = {1,2,3,4};

printf("add_1 and sum = %i\n",

map_reduce(list1 , add_1 , sum , 4));

int list2 [3] = {2,2,2};

printf("noop and mul = %i\n",

map_reduce(list2 , noop , mul , 3));

return 0;

}

11

7 Additional Reading

const is important and should be used correctly. http://publications.

gbdirect.co.uk/c_book/chapter8/const_and_volatile.html

Think you’ve got all of this? Try the advanced version combining too many
types and pointers. http://c-faq.com/decl/spiral.anderson.html

12

http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html
http://publications.gbdirect.co.uk/c_book/chapter8/const_and_volatile.html
http://c-faq.com/decl/spiral.anderson.html

	Introduction
	Strings
	Using Pointers
	Allocating Memory
	Structs
	Function Pointers
	Additional Reading

